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Nonlinear unsteady aerodynamic e!ects present major modelling di$culties in the analysis and
control of aeroelastic response. A rigorous mathematical framework, that can account for the complex
nonlinearities and time-history e!ects of the unsteady aerodynamic response, is provided by the use of
functional representations. A recent development, based on functional approximation theory, has
achieved a new functional form; namely, multi-layer functionals. The development of a multi-layer
functional for discrete-time, "nite memory, causal systems has been shown to be realizable via "nite
impulse response neural networks. Identi"cation of an appropriate temporal neural network model of
the nonlinear transonic aerodynamic response is facilitated via a supervised training process using
multiple input}output sets, with data obtained by an Euler CFD code. The training process is based
on a genetic algorithm to optimize the network architecture, combined with a random search
algorithm to update weight and bias values. The approach is examined for two di!erent multiple
aerodynamic input}output data sets, and in both cases, the prediction properties of the network
model establish the multi-layer functional as a suitable representation of unsteady aerodynamic
response. ( 2001 Academic Press
1. INTRODUCTION

MODELLING AND PREDICTION of unsteady aerodynamic behaviour presents a signi"cant
challenge for the analysis and control of adverse aeroelastic phenomena. In addition, with
the enlargement of #ight operational conditions in modern aviation, prediction of aeroelas-
tic response can no longer be based on the methodologies that neglect nonlinear e!ects for
describing unsteady aerodynamic behaviour. For unsteady aerodynamic modelling, the
nonlinear #ow e!ects of interest are mostly due to separated #ows and compressibility
e!ects leading to the appearance and dynamic excursion of shock waves (McCroskey 1977,
1982; Tijdeman & Seebass 1980). As the direct use of the basic #uid mechanic equations
(Nixon 1989) is still not practical for aeroelastic applications, approximate models of the
nonlinear unsteady aerodynamic response are justi"ed.

Subjected to the premise that the unsteady aerodynamic model can be determined in
isolation of the physical laws governing the structural motion, the in#uence of the implicit
0889}9746/01/010083#24 $35.00/0 ( 2001 Academic Press
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time-delays on pressure variations introduced by the spatio-temporal propagation and
convection of #ow variables can be represented by the motion history alone. These
assumptions allow the application of the principles of dynamic systems theory, so that
unsteady aerodynamic models can be obtained from mathematical laws. Empirical evidence
suggests that, for transonic regimes, a functional description of the unsteady aerodynamic
force response is justi"ed. The existence of a unique nonlinear aerodynamic force response
functional appropriate to a particular #ow regime is, necessarily, inferential. Nonunique-
ness of the aerodynamic force response is generally associated with certain types of
degenerate #ow"eld behaviour. In particular, aerodynamic hysteresis, #ow instability and
bifurcation have been identi"ed as key elements in the breakdown of unique, single-valued
behaviour of the aerodynamic force response (Tobak & Chapman 1985). Flows admitting
shock excursion o!er a potentially rich source of mechanisms for the realization of such
phenomena. However, computational and experimental evidence suggests that, for certain
classes of #ows, unique single-valued behaviour of the aerodynamic force response is
observed over a range of #ow parameters and motion histories. The basic properties of the
aerodynamic functional depend on the nature of the #ow regime with which it is associated
and the class of admissible motion histories for which it is de"ned.

Tobak and co-workers (Tobak & Pearson 1964; Tobak & Schi! 1981; Tobak & Chap-
man 1985) have developed a hierarchical class of functional aerodynamic force response
models su$ciently general to encompass a broad range of #ow regimes and motion
histories. Although explicit representation of the aerodynamic force response functional is
generally unavailable, its notional existence permits a succinct representation of the aerody-
namic force response. In addition, several methods exist to identify approximate aerody-
namic force response functionals from known characteristics of the motion history and
aerodynamic response.

Other functional forms can also be used to identify nonlinear unsteady aerodynamic
models. A convenient approach is based on the Volterra functional series (Silva 1993). In
this approach, the functional is approximated by an in"nite series of multi-dimensional
convolution integrals of increasing order. However, the implementation of these functional
forms is generally complicated. In addition, other approaches applied in identi"cation of
nonlinear dynamic systems; for example, the Wiener methods and block-oriented models
(Billings 1980; Schetzen 1980), present complications for unsteady aerodynamic modelling.

Recently, an alternative approach to the approximation of nonlinear functionals has been
proposed by Modha & Hecht-Nielsen (1993), providing an appropriate framework for
a large class of nonlinear system models. The so-called, multi-layer functionals are a new
parametric family of real-valued mappings constructed from a nonlinear combination of
linear a$ne functionals on arbitrary normed spaces. Moreover, the approximate functional
form is conveniently represented by a temporal neural network. In the context of unsteady
aerodynamic response modelling, the use of multi-layer functionals has been "rstly applied
by Marques & Anderson (1996). The weakly nonlinear behaviour of the normal force
coe$cient response on pitching 2-D airfoils with mildly trailing edge separated #ow has
been modelled by a temporal neural network in discrete-time. The approach has shown to
be an e$cient model form for nonlinear unsteady aerodynamic characteristics. Marques
(1997) has formalized the multi-layer functional approach as a representation for the
nonlinear unsteady aerodynamic response behaviour for a larger class of #ow regimes.

The utility of neural networks in nonlinear system modelling is well-documented (Haykin
1994). Identi"cation of an appropriate temporal neural network model is achieved via
a training process, in which a limited sample of system input}output data sets is presented
to the network. In general, the network architecture and parameters are adjusted to
minimize a measure of the error between the network and the sample outputs. For
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a su$ciently broad sample of training data, the inherent generalization properties of the
network enable prediction to arbitrary inputs. An advantage of the neural network repres-
entation is that it readily accommodates multiple-input/multiple-output system descrip-
tions. In the context of aeroelastic design, a network model of the unsteady aerodynamic
response can be combined with a standard structural dynamic model for the purposes of
control system design. Furthermore, static freestream parameters (e.g. Mach number) are
readily accommodated in the network model thereby ensuring validity over a range of #ow
regimes.

The present work is concerned with the use of multi-layer functionals in the representa-
tion of nonlinear unsteady aerodynamic response. A brief account of the approximation
and realization of nonlinear functionals by temporal neural networks is presented. This is
followed by a description of a network identi"cation procedure based on a genetic
algorithm (Goldberg 1989) combined with a random search algorithm in which both the
network architecture and network parameters are optimized for multiple training sets. The
genetic algorithm approach has been adopted in order to overcome some of the di$culties
of implementing a temporal back-propagation algorithm (Wan 1990). For the particular
case of FIR neural networks, the application of a genetic algorithm for training and
adaptation provides a more #exible approach. This is a consequence of the ability to assign
di!erent time-delays per connection, as well as the absence of causality constraint problems.
The approach is tested for two di!erent modelling cases. In both cases, the scheme is used to
model the motion-induced unsteady aerodynamic response for a 2-D aerofoil in transonic
#ow. The "rst case study considers the aerodynamic responses for a "xed Mach number,
while in the second case study a range of Mach numbers is used. The prediction properties
of the multi-layer functional representation for both aerodynamic models are presented and
discussed.

2. MULTI-LAYER FUNCTIONAL REPRESENTATION

Multi-layer functionals (Modha & Hecht-Nielsen 1993) comprise a new parametric family
of real-valued mappings of nonlinear functionals represented as a combination of linear
functionals. Multi-layer functionals are de"ned via an extension of the universal approxi-
mator theorem (Cybenko 1989), and are of the general form,
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2.1. TEMPORAL NEURAL NETWORKS

A close examination of equation (2) reveals that it corresponds to the de"nition of temporal
neural networks (Wan 1990; Haykin 1994). Temporal neural networks comprise the cat-
egory of neural networks represented by a spatio-temporal neuron model joined by connect-
ing links called synapses. In this case, the synapses are modelled by linear, time-invariant,
continuous-time ,lters. Each neuron modi"es its inputs through an activation function.

Figure 1 illustrates the temporal neuron model, in which the synapse i belonging to the
neuron j has its temporal behaviour described by an impulse response h

ji
(t). For the input

x
i
(t) denoting the excitation applied to synapse i (for i"1,2, p), the synaptic response is

determined by the convolution of the impulse response h
ji
(t) with x

i
(t). For a neuron j with

a total of p synapses, the associated activation potential v
j
(t), due to the combined e!ect of

the inputs and the biases h
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The neuron output y
j
(t) is obtained by applying the activation function, u (e.g. a sigmoidal

function) on v
j
(t); that is,
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A multi-layer temporal neural network is formed by composing layers of neurons.
A schematic representation of a multi-layer network architecture, for the input-output pair
(x(t), y(t)), composed of neurons modelled by equations (3) and (4), distributed in two hidden
Figure 2. Temporal network architecture.

Figure 1. Temporal neuron model.
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layers, is depicted in Figure 2. Here each of the neurons are presented as simpli"ed
representations of that shown in Figure 1.

2.2. FIR NEURAL NETWORK MODEL

From a computational point of view, it is convenient to assign a "nite memory ¹ to the
synaptic "lter and to approximate the convolution integral in equation (3) by a convolution
sum. Consequently, the continuous-time variable t is replaced by a discrete-time variable
n de"ned by t"n*t, where n is an integer and *t is the sample interval. Equation (3) is then
approximated as
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where q
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is the number of delay units of the "lter in synapse i belonging to the neuron j, and
w
ji
(l) is a weight value at time-delay l.
Equation (5) describes the expression for the activation potential of the ,nite impulse

response (FIR) neuron model. The neural network model composed of FIR neurons is
referred to as a FIR neural network.

3. FIR NETWORK MODEL IDENTIFICATION VIA
SUPERVISED TRAINING

Identi"cation of an appropriate FIR network model is achieved via a supervised training
process in which a limited sample of system input}output sets is presented to the network.
Where the network architecture and network delays are prescribed, the synaptic weights
can be trained using a temporal version of the back-propagation algorithm (Haykin 1994;
Wan 1990). However, prescribed networks of this kind may exhibit poor generalization
properties. An e$cient network optimization scheme can be formulated via a genetic
algorithm (Goldberg 1989).

Genetic algorithms are a type of evolution-based search algorithm which manipulate sets
of possible encoded solutions for a problem. The elements of a conventional genetic
algorithm comprise: Individuals, representing possible solutions to a problem, with features
encoded in a chromosome; Chromosomes, the basic units of a genetic algorithm that encode
how each individual is to be constructed; Genes, subsets of a chromosome that maintain
a particular feature of an individual; Population, a complete set of individuals; Fitness
Function, a value assigned to determine how good an individual is as a solution to the given
problem.

A genetic algorithm (Goldberg 1989) generally starts with a randomly initialized popula-
tion. Each individual is evaluated by decoding its chromosome and applying the "tness
function. New individuals are the result of combining individuals from the original popula-
tion. A genetic algorithm is facilitated by the operations of: Selection, to choose the
individuals for combination; Crossover, to create new individuals by swapping genes from
the selected individuals; Mutation, to guarantee that occasionally (with low probability
value) a few genes are modi"ed and therefore a new search space can be explored, thereby
increasing the chance of achieving the global minimum. The process is repeated until a new
complete population is established, therefore, completing a generation. The algorithm is
further iterated only if a termination criterion is not satis"ed.

The genetic algorithm is used as part of a supervised training process to obtain an
optimal architecture for the FIR network while, simultaneously, identifying the synaptic
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weights. To achieve this, the algorithm interprets each FIR neural network as an individual
belonging to a population. The associated chromosome is a sequence comprising the
time-delays and weights per connection. The measure of the network "tness, f, is de"ned by
the inverse of the sum of squared errors between the desired and the network outputs; that
is,
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The inclusion of multiple data sets in the de"nition of the network "tness function di!ers

from normal practice where a single (extended) data set is commonly adopted. The main
advantage of the present approach lies in the exposure of each of the networks in the
population to a broad class of input history, thereby ensuring good generalization proper-
ties. The networks in the population are constrained to maintain certain basic features; that
is, they must present a multi-layered architecture of biased neurons without missing
connections between hidden layers, all hidden neurons are nonlinear (sigmoid activation
function), and all output neurons are linear.

The chromosome is represented by a string of constant length irrespective of the
architecture encoded within it. This is achieved by assuming an FIR network architecture
with bounded parameters. The chromosome size depends on the limiting FIR network
considered. It is a string which records the information necessary to decode any feasible
network within the pre-de"ned bounded architecture. For each neuron of the limiting
architecture, the string is the sequence of all time-delay values of the previous hidden layer
to the neuron itself. The complete chromosome is the sequence described above for all
neurons of the limiting architecture. Figure (3) depicts a generic representation for the
chromosome encoding FIR networks, where Nf

i
is a #ag indicating whether the neuron

i exists or not, q
i,j

is the time-delay in the connection between neurons j (in the previous
layer) to i, and m is the number of neurons of the previous layer.

For each existent neuron, the respective weight vector (for each connection) and the bias
value are recorded separately, but they must always be related to their respective connec-
tion and neuron, whatever be the genetic operation.

3.1. NETWORK TRAINING PROCESS

The supervised training process commences with an initial population of individuals. Each
individual is created with a randomly generated architecture and receives random weight
values from a uniform distribution (!1)0 to 1)0). The entire population is evaluated by
a feedforward pass of each individual to produce a "tness distribution.

In the next step, parents are selected using the minimum, average and maximum "tness
values in the distribution. The selection operator re-scales the "tnesses of the population via
Figure 3. Generic representation of the chromosome.
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a linear rule and then conventional roulette wheel selection (Goldberg 1989) is applied.
Selected parents produce new individuals by the crossover operator. A crossover operator is
used in which multiple crossover points may be chosen. Some care must be taken after the
production of new individuals. Encoded FIR networks of di!erent architectures may
present problems during genetic operations. The gaps left inside the chromosomes by
nonexistent neurons or connections may lead to an inconsistent new individual after the
crossover operation. The procedure is monitored to identify potential anomalies. An
attempt is made to correct any distortions of the new individuals' architecture thereby
enabling chromosome strings to be re-arranged in the best way possible. If this is not
feasible, then the new individual is discarded. If a new individual is accepted, there is also
a possibility of that individual being mutated. The new individual's chromosome is swept
gene by gene and for each gene the mutation operator changes its value with respect to
a low probability value. Only time-delay values and neuron genes are mutated (with
probability values P

t
and P

n
, respectively).

A "nal operation is applied to update weight and bias values of the new individuals. This
operation consists of perturbing each weight and bias value by a zero mean, unit variance
normally distributed random value scaled by a proportionality constant b. The new values
of weight and bias are only accepted if they lead to a "tter network. This process is repeated
several times before returning the modi"ed individual to the population.

Following each generation, the new and old individuals are compared in terms of their
"tness values and the best individuals are retained for the next generation. To mitigate
against the possibility of convergence to sub-optimal solutions, an additional mutation
operator is used. This so-called forced mutation operator is invoked only after a pre-de"ned
number of generations with the same "tness value for the best individual. For each member
of the population, the operator randomly selects a gene which is to be modi"ed. The gene is
modi"ed and the individual is tested to check if its new "tness is greater than the old one. If
this is the case, the individual is accepted, otherwise it is only accepted with a probability of
10~4. The routine is repeated a number of times and the "nal mutated individual returns to
the population.

Two alternative criteria are used to terminate the genetic algorithm: (i) the number of
generations exceeds a pre-de"ned limit, or (ii) the "tness of the best individual exceeds
a pre-de"ned goal value.

4. MULTI-LAYER FUNCTIONAL OF NONLINEAR UNSTEADY TRANSONIC
AERODYNAMIC RESPONSE

To illustrate the use of the multi-layer functional representation in the context of unsteady
aerodynamic response modelling, the unsteady aerodynamic response of a 2-D aerofoil to
variations in angle of incidence is considered for a range of Mach numbers in the transonic
regime. Here, the nonlinear functional relationship (cf. Figure 4) between lift force coe$cient
C

L
(t), pitch moment coe$cient at 1

4
chord length C
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(t), and incidence histories a

t
, for

a NACA-0012 aerofoil operating in a range of Mach numbers is
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Multi-layer functional models are identi"ed for two di!erent problems. The "rst one
considers the identi"cation of a FIR network model for the motion-induced aerodynamic
system response described above at a "xed Mach number, while the second problem
considers the model identi"cation for a range of Mach numbers (0)625(M(0)725). The



Figure 4. Features for the unsteady aerodynamic response modelling (sonic speed is 340)5 ms~1, and chord
length is 0)55 m).
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transonic aerodynamic database is created using a CFD code (Dubuc et al. 1997) based on
the numerical solution of the nonlinear Euler equations. Numerical experiments have been
carried out to establish the range of incidence motion which covers the nonlinear behaviour
of the aerodynamic response. These experiments are based on the observations of variations
of the pressure coe$cient distribution around the aerofoil due to shock waves excursion
during the incidence motion. For the Mach numbers 0)625, 0)675, and 0)725, the maximum
absolute values of the incidence angle that exhibits the aforementioned compressibility
e!ects are, respectively: 4)5, 3)0, and 1)53. Beyond these values, the data validity produced by
the Euler CFD code may be compromised (shock-induced separation may be present and
the code does not account for viscous e!ects).

The training process demands that a broad range of motion-induced unsteady aerody-
namic responses be used during the nonlinear identi"cation of the multi-layer functional
model. This requirement is associated with the nonlinear nature of the unsteady transonic
aerodynamic response, and the need for a variety of characteristic motion histories and
Mach numbers within the chosen range for the network identi"cation process. Here, three
characteristic motions comprising sinusoidal, ramp-up, and pulse-down input histories are
considered in both case studies. The characteristic motions are not derived from of any
systematic procedure, but are assumed to explore a su$ciently broad range of the input and
output spaces for which a reasonably smooth (transient) unsteady aerodynamic response
can be assumed. Another aspect is related to the frequency content of these characteristic
motions, that should allow a broad range of frequencies to be captured by the FIR network
during the identi"cation process.

To compose the training sets, each characteristic motion is assumed for the respective
Mach number, depending on the case study in question. In the "rst case study, the training
patterns are considered at a "xed Mach number value of M"0)65, while in the second case
study, the training patterns are prescribed at each of the three Mach numbers of 0)625,
0)675, and 0)725, and conform to the limits for the absolute values of incidence. In each
training pattern, the motion history is normalized with respect to the maximum incidence
prior to training. For all training sets, the appearance and dynamic motion of shock waves
responsible for nonlinear behaviour of the unsteady aerodynamic response can be observed.
The characteristic motions for training have a sample interval of 0)002 s, to ensure an
adequate representation of the input motion histories and output aerodynamic responses.

4.1. FIRST CASE STUDY: FIXED MACH NUMBER

Table 1 presents a description of each one of the training sets used in the identi"cation
process. In order to help the convergence, the training process is carried out in stages, with
some training parameters altered from one stage to another. A trial-and-error approach is



TABLE 1
Training set motions for the identi"cation of the unsteady aerody-

namic response model in the transonic regime ("xed M"0)65)

Characteristic motion Range

Sinusoidal a
.%!/

"03; amplitude"43, k"0)07807
Sigmoidal ramp-up a

.*/
"!13; a

.!9
"43

Pulse-down a
*/*5*!-

"13; a
16-4%

"!4)53; a
&*/!-

"13

TABLE 2
Training parameters*"rst case study

Training parameters Value
Stage 1 Stage 2 Stage 3

Population size 14 14 14
Crossover points 13 13 13
P
t
and P

n
0)5% 0)5% 0)5%

b 0)0001 0)0001 0)001
Cycles to update weight/bias 5 5 5
Steps before forced mutation 200 100 100
Generations 100000 100000 50000
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used to obtain new training values for each stage. Here, a three-stage training process,
totaling 250 000 generations, is carried out. For the maximum complexity FIR network
architecture in the population: two hidden layers and 10 neurons per hidden layer are used.
The number of hidden layers and number of neurons per hidden layer adopted are based on
the typical values for neural networks architectures (Haykin 1994). A maximum time-delay
per connection of 6 is assumed (via a trial-and-error approach). Table 2 presents the
complete set of training parameters.

The architecture and time-delay distribution of the identi"ed FIR network model is
shown in Figure 5. Figures 6}8 present a comparison between the lift force coe$cient and
pitch moment coe$cient responses obtained by the Euler CFD code and the respective FIR
network outputs for each of the training sets after the completion of identi"cation process.
Figure 9 shows the pressure distribution variation due to the aerofoil motion de"ned by the
case of Figure 6. Here, it is possible to observe the appearance and dynamic motion of the
shock wave. The extent of the shock excursion determines the degree of nonlinearity
considered in the present work. The generalization properties of the identi"ed FIR network
model are examined in Figures 10}15, by presenting arbitrary incidence motion histories to
the identi"ed model and comparing Euler CFD code and FIR network outputs.

4.2. SECOND CASE STUDY: RANGE OF MACH NUMBERS

Three characteristic incidence motion histories are also considered in this problem, but here
each one is considered at a di!erent Mach number. The training sets are presented in Table 3,
and the basic problem features are the same as in Figure 4. A three-stage training process,
totaling 430 000 generations, is carried out. For the maximum complexity network architec-
ture in the population, two hidden layers and 10 neurons per hidden layer are used.
A maximum time-delay per connection of 4 is assumed. The methodology for selecting the
architecture and time-delay values follows a similar approach to that adopted in the "rst
case study. Table 4 presents the complete set of training parameters.



Figure 5. Identi"ed FIR network model for the "rst case study; "xed M (numbers in the boxes represent
time-delays).

Figure 6. Identi"cation of the unsteady aerodynamic response model in the transonic regime ("xed M"0)65,
k"0)07807): **, Euler CFD code; }} } , FIR network output, after training for the sinusoidal case.

Figure 7. Identi"cation of the unsteady aerodynamic response model in the transonic regime ("xed M"0)65):
**, Euler CFD code; } } } , FIR network output, after training for the sigmoidal ramp-up case.
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Figure 8. Identi"cation of the unsteady aerodynamic response model in the transonic regime ("xed M"0)65):
**, Euler CFD code; } } } , FIR network output, after training for the pulse-down case.
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The architecture and time-delay distribution of the identi"ed FIR network model is
shown in Figure 16. The training results, after completion of the identi"cation process, are
presented in Figures 17}19. Due to the large number of sets (nine in total) only few
representative training cases are presented. All the presented motion-induced aerodynamic
responses for each transonic Mach number are reasonably reconstructed.

In a similar manner to "rst case study, the robustness of the identi"ed multi-layer
functional model is examined in Figures 20}27 by presenting arbitrary incidence motion
histories to the identi"ed model and comparing Euler CFD code and FIR network outputs.

4.3. DISCUSSION

Both unsteady transonic aerodynamic response models have shown encouraging results to
endorse the use of multi-layer functional representations. The ability of the FIR network
model to capture the essential characteristics of both linear and nonlinear aerodynamic
behaviour can be observed in simulations for motion histories (and Mach numbers)
di!erent from those used for training purposes. In contrast to the time demanded by the
training process to identify the model, evaluations of the resulting network after training are
fast enough to allow real-time predictions, justifying further applications in aeroelastic
analysis and control design. Moreover, the implementation of a FIR network is simple.

The presence of two hidden layers in both "nal network models ensures functional
complexity, as observed in Figures 5 and 16. The typical time-delay distribution within the
network also provides features to the identi"ed models that are consistent with the physical
behaviour of unsteady transonic #ow"elds. Despite the complexity of the searching space,
the resulting FIR network architecture is shown to be simple. The simplicity of the
architecture, in association with good generalization results, reinforces the satisfactory
performance of the identi"cation process. The large number of evaluations required by the
training process was due to two main factors: (i) the length of the chromosome to encode the
FIR network was relatively large; (ii) the genetic search was carried out in a search space
determined by real-valued parameters (network weights per connection).



Figure 9. Pressure distribution variation in relation to airfoil motion; Case in Figure 6 (M"0)65, k"0)07807):
(a) angle of attack history; (b) Point 1 at t"0)008 s, a(t)"1)9273; (c) Point 2 at t"0)02 s, a(t)"3)83; (d) Point 3 at
t"0)026 s, a(t)"3)993; (e) Point 4 at t"0)03 s, a(t)"3)83; (f) Point 5 at t"0)042 s, a(t)"1)9273; (g) Point 6 at

t"0)05 s, a(t)"0)03.
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For the identi"ed FIR network model at "xed Mach number ("rst case study) the
nonlinear behaviour of both lift force and pitch moment coe$cients is adequately captured.
Some discrepancies are associated with the pitch moment coe$cient response; however,
these are explained by the more severe nonlinear characteristics of the pitch moment
response. Nevertheless, the predicted FIR network response displays the main features of
the pitch moment response. For the lift force coe$cient, good agreement with the training
sets is achieved.

Generally, the predictive capabilities of the identi"ed model of the unsteady aerodynamic
response in the transonic regime (for the "rst case study) are shown to be satisfactory for the
majority of the test cases not contained in the training sets. This is particularly true for the
lift force coe$cient responses. When tested in the linear range of the unsteady aerodynamic
response, the identi"ed FIR network model has not shown good predictive qualities,
although the error in the overall responses is not patircularly large. The case illustrated in
Figure 10 is obtained from a sinusoidal incidence motion with mean angle of attack equal to



Figure 10. Generalization test of the FIR network model to arbitrary motion history (linear case, k"0)07807).:
*** Euler CFD code; } } } FIR network output.

Figure 11. Generalization test of the FIR network model to arbitrary motion history (low-frequency case,
k"0)03903): *** Euler CFD code; } } } FIR network output.
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zero and 0)53 amplitude at the reduced frequency of 0)07807. The poorer prediction
performance compared to the linear case is due to the fact that the training patterns used to
achieve the network model are all in the nonlinear range of the unsteady aerodynamics. To
reduce this de"ciency, a larger set of training patterns is necessary.

In the nonlinear range of the motion-induced unsteady aerodynamic responses, the FIR
network model presents good generalization for low-frequency oscillatory cases. Figure 11
presents a case where the sinusoidal incidence motion is half the frequency of the corre-
sponding case used in the training sets. Only a few discrepancies can be observed in the
pitch moment response of the FIR network model. Nevertheless, when a higher frequency



Figure 12. Generalization test of the FIR network model to arbitrary motion history (high-frequency case,
k"0)156): *** Euler CFD code; } } } FIR network output.

Figure 13. Generalization test of the FIR network model to arbitrary motion history:*** Euler CFD code;
} } } FIR network output.
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sinusoidal motion is tested, as in the case illustrated in Figure 12, the discrepancies in the
pitch moment response increase. Here, the frequency of the incidence motion is twice that of
the corresponding case used in the training sets.

Figures 13}15 present more generalization tests of the "rst case study FIR neural
network model of unsteady aerodynamic response in the transonic regime ("xed M"0)65).
The FIR network model outputs for those cases also indicate good agreement with the
desired unsteady aerodynamic responses, even when the incidence variations are beyond
the training limits. In some simulations of the FIR network representation, the unsteady
aerodynamic responses present pronounced oscillatory behaviour at the beginning of the
motion. The reason for this behaviour is the inherent temporal network transient response



Figure 14. Generalization test of the FIR network model to arbitrary motion history (k"0)07807): ***
Euler CFD code; } } } FIR network output.

Figure 15. Generalization test of the FIR network model to a motion history beyond the training limits:***
Euler CFD code; }} } FIR network output.
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caused by the absence of time-delay information at the beginning of the motion. In the "rst
steps during the FIR network simulation there is a lack of input information prior to time
zero, and the network response is degraded. Therefore, the "rst steps of the network
simulation should be neglected in any discussion of the network prediction qualities.

Signi"cant discrepancies arise again in the pitch moment responses in relation to the lift
responses. One can observe that the lift coe$cient response is always better predicted by the
network model. An explanation is in the di!erent degrees of nonlinearity and time-delay
dependency between the two loads. These peculiarities raise di$culties to simultaneously
predict both lift and pitch moment coe$cient responses with the same level of accuracy. To
ensure more accurate predictions of the pitch moment coe$cient response, two alternatives



TABLE 3
Training set motions for the identi"cation of the unsteady aerodynamic response model for

a range of Mach numbers in the transonic regime

Characteristic motion M Range

Sinusoidal 0)625 a
.%!/

"03; amplitude"4)53, k"0)08119
0)675 a

.%!/
"03; amplitude"3)03, k"0)07517

0)725 a
.%!/

"03; amplitude"1)53, k"0)06999

Sigmoidal ramp-up 0)625 a
.*/

"03; a
.!9

"4)53
0)675 a

.*/
"03; a

.!9
"3)03

0)725 a
.*/

"03; a
.!9

"1)53

Pulse-down 0)625 a
*/*5*!-

"03; a
16-4%

"!4)53; a
&*/!-

"03
0)675 a

*/*5*!-
"03; a

16-4%
"!3)03; a

&*/!-
"03

0)725 a
*/*5*!-

"03; a
16-4%

"!1)53; a
&*/!-

"03

TABLE 4
Training parameters*second case study

Training parameters Value
Stage 1 Stage 2 Stage 3

Population size 14 14 14
Crossover points 7 13 5
P
t
and P

n
0)5% 0)5% 0)5%

b 10~4 10~4 10~4
Cycles in updating weights 5 5 5
Steps before forced mutation 200 200 100
Generations 200 000 50 000 180 000

Figure 16. Identi"ed FIR network model for the second case study; range of M (numbers in the boxes represent
time-delays).
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Figure 17. Identi"cation of the unsteady aerodynamic response in the transonic regime (M"0)625,
k"0)08119): **, Euler CFD code; }} } , FIR network output, after training for the sinusoidal case.

Figure 18. Identi"cation of the unsteady aerodynamic response in the transonic regime (M"0)675):**, Euler
CFD code; } }} }, FIR network output, after training for the sigmoidal ramp-up case.
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can be suggested. The "rst approach is to represent lift and pitch moment coe$cients by
di!erent FIR neural networks, while the second approach is to enlarge the size of the
training sets.

The second study case, where a range of M is considered, represents a greater challenge to
the identi"cation process. The increased size of the search space, in comparison with the
previous case, requires a greater number of training iterations. These di$culties are also
observed in the complexity of the "nal adapted architecture, as depicted in Figure 16.
Although discrepancies in the training results for the pitch moment are larger than in the



Figure 19. Identi"cation of the unsteady aerodynamic response in the transonic regime (M"0)725):**, Euler
CFD code; } } } , FIR network output, after training for the pulse-down case.

Figure 20. Generalization test of the FIR network model to arbitrary motion history (linear case, M"0)7,
k"0)07250): *** Euler CFD code; } } } FIR network output.
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"rst case study, the overall features of the unsteady aerodynamic response are captured.
Again, the lift force coe$cient response of the FIR network model is better than the pitch
moment response.

When tested in the linear range of the aerodynamic response, the FIR network model
reveals good approximation of the lift coe$cient response; however, a very poor prediction
of the moment coe$cient response (in the form of a large out of phase motion) can also be
observed. This linear case in Figure 20, is obtained from a sinusoidal motion with mean
incidence equal to zero, 0)53 amplitude, reduced frequency of 0)07250, and M"0)7. The
FIR network model output for this case reveals a reasonable approximation of the lift



Figure 21. Generalization test of the FIR network model to arbitrary motion history (high-frequency case,
M"0)625, k"0)16238): *** Euler CFD code; } } } FIR network output.

Figure 22. Generalization test of the FIR network model to arbitrary motion history (low-frequency case,
M"0)725, k"0)03499): *** Euler CFD code; } } } FIR network output.
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coe$cient response; however, a very poor prediction of the moment coe$cient response, in
the form of large out-of-phase motion, can also be observed. As in the "rst case study,
a larger set of training patterns is required to improve the predictive qualities of the network
model.

In the nonlinear range of the aerodynamic response, the FIR network for the second case
study is tested for oscillatory motions (cf. Figures 21 and 22) at di!erent frequency values
compared with the ones in the training sets. The frequency for the case in Figure 21 is twice
that of the training set oscillatory case, the amplitude is 4)53 and the Mach number is equal
to 0)625. The second case in Figure 22 presents a frequency value that is half that of the



Figure 23. Generalization test of the FIR network model to arbitrary motion history (M"0)65):*** Euler
CFD code; }} } FIR network output.

Figure 24. Generalization test of the FIR network model to arbitrary motion history (M"0)65, k"0)07807):
*** Euler CFD code; } } } FIR network output.
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training set, the amplitude is 1)53 (M"0)725). The FIR network approximation of the pitch
moment coe$cient response for these cases, again, exhibits very poor results.

Figures 23}26 present more generalization tests of the FIR network model for the second
case study. These cases correspond to pulses, ramps, and oscillatory input motions in the
range of nonlinear behaviour of aerodynamic response, and for di!erent Mach numbers
that were used for training. Most of the predictive failures arise in the pitch moment
responses, where larger errors can be observed. Despite the di!erences and the prediction
disparities, the FIR network model exhibits the main features of the unsteady responses,
even at Mach numbers di!erent from those adopted in the training sets. Larger errors in the
steady-state response of the pitch moment can also be observed for a range of Mach



Figure 25. Generalization test of the FIR network model to arbitrary motion history (M"0)68):*** Euler
CFD code; }} } FIR network output.

Figure 26. Generalization test of the FIR network model to arbitrary motion history (M"0)7):*** Euler
CFD code; }} } FIR network output.
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numbers in which shock waves are present. As already discussed for the "rst case study,
discrepancies in the predictions of the lift and pitch moment responses highlight the need for
the improvements in the network identi"cation algorithm and/or in the training patterns
used.

The behaviour of the FIR network model is also tested for a case with Mach number
beyond the training limits. An oscillatory motion with the same frequency as that used in
the training sets, amplitude 13 and Mach number of 0)75 (k"0)06766), is considered. Figure
27 shows that the network model (in particular for the lift coe$cient response) provides
reasonable predictive characteristics.



Figure 27. Generalization test of the FIR network model to a motion history beyond the training limits
(M"0)75, k"0)06766): *** Euler CFD code; } } } FIR network output.
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5. CONCLUSIONS

A novel functional form, the multi-layer functional, is used to identify a model of the
unsteady aerodynamic response of a 2-D aerofoil applicable to a range of Mach numbers in
the transient regime. Multi-layer functionals, realized by FIR neural networks, furnish
a suitable parametric model for the prediction of nonlinear motion-induced unsteady
aerodynamic loads over a limited range of Mach numbers in transonic #ow regime. The
approach also has the advantage of intrinsically accounting for nonlinearities and time-
history dependencies encountered in unsteady #ow regimes. The methodology can also be
used to provide multiple input multiple output models for aeroelastic applications (analysis
and control design), allowing fast evaluation of the aerodynamic responses. Finally, the
di$culties related to the traditional nonlinear system identi"cation approaches are dimin-
ished by using neural network modelling schemes.

The combination of genetic search and random search to identify a FIR neural network
model is shown to overcome many of the di$culties associated with the standard temporal
back-propagation algorithm, facilitating the manipulation of complex network architec-
tures and training parameters. Generalization test results show that, given only the limited
training set data, the FIR neural network models are capable of reasonable predictions of
the unsteady transonic aerodynamic responses due to any motion history and #ow para-
meters within the training boundaries. Two case studies are presented where network
models are identi"ed for "xed Mach numbers and for a range of Mach numbers. Although
the results for the moment coe$cient response are relatively poor, good predictions of the
lift force coe$cient response are achieved. The generalization performance of the FIR
network models reveals the importance of the features of the training patterns to the
identi"cation algorithm. The complexity of nonlinearities involved in the aerodynamic
cases, added to the limitations on the information contained in the training sets available for
the identi"cation process, represent important factors in the "nal FIR network model.
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APPENDIX: NOMENCLATURE

C
L
(t) unsteady aerodynamic lift force coe$cient response at time t

C
m1@4

(t) unsteady aerodynamic pitch moment coe$cient response at 25% chord length at time t
d
i
(n) desired output of training set i at discrete-time n

f "tness function
h
j

unit impulse response of process unit j
h
ji

impulse response of neuron j due to excitation applied to synapse i
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k reduced frequency
¸ total number of time samples per training set
L linear functional representation
M Mach number
MF multi-layer functional representation
n discrete-time step
N

c
number of input}output training sets

Nf
i

chromosome #ag indicating whether the neuron i exists or not
P
n

probability for the mutation of a neuron value (existent or nonexistent)
P
t

probability for the mutation of a time-delay value
t time
¹
ji

memory span of the synapse i belonging to the neuron j
u
t

scalar generalized coordinate or displacement history
;

=
freestream velocity

v
j

activation potential of neuron j
w
ji
(q

ji
) weight value of synapse i belonging to neuron j corresponding to the time-delay q

ji
x
i
(t) excitation applied to synapse i at time t

y(t) dynamic system output response at time t
a(t) angle of attack value at time t
a
t

angle of attack history
b perturbation constant used to update weight and bias values
f real-valued constant
h
i

bias value of neuron i
q
ji

number of time-delays of the "nite memory "lter in synapse i belonging to the neuron j
u neuron activation function de"ned as a nonconstant, bounded, monotone-increasing

continuous function (for example, a sigmoidal function)


	1. INTRODUCTION
	2. MULTI-LAYER FUNCTIONAL REPRESENTATION
	Figure 1
	Figure 2

	3. FIR NETWORK MODEL IDENTIFICATION VIA SUPERVISED TRAINING
	Figure 3

	4. MULTI-LAYER FUNCTIONAL OF NONLINEAR UNSTEADY TRANSONIC AERODYNAMIC RESPONSE
	Figure 4
	TABLE 1
	TABLE 2
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	TABLE 3
	TABLE 4
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Figure 25
	Figure 26
	Figure 27

	5. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX: NOMENCLATURE

